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Metamaterials have extraordinary optical properties, which can be utilized in novel imaging systems. Their imaging properties, 

however, cannot be determined by simple geometrical optics. Here we propose a method that combines full wave simulation, transfer 

matrix method and geometrical optics to efficiently simulate imaging systems containing metamaterials. The dispersion relation of a 

periodic metamaterial slab is retrieved from the S-parameters obtained from full wave simulation of the unit cell. The dispersion 

relation can be connected with numerical field solvers, e.g. the transfer matrix method, to calculate the field produced by a point 

source placed behind a metamaterial slab. Finally, light rays are derived from the full wave solution to obtain the virtual image of the 

point source. From the virtual distance an effective geometrical refractive index is determined, which characterizes the imaging 

properties of the metamaterial. Using the developed procedure, imaging possibilities with fishnet metamaterials are investigated. 

 
Index Terms—Geometrical optics, Optical Imaging, Optical Metamaterials, Optical Propagation  

 

I. INTRODUCTION 

ETAMATERIALS are artificial structures with sub-

wavelength feature sizes, which offer possibility to 

engineer materials with nearly arbitrary optical properties, like 

negative, near-zero or ultrahigh refractive index in various 

frequency regimes [1]. Although optical metamaterials are not 

commercialized yet, they are intensively researched [2]-[3] 

and expected to open up new possibilities for optical devices.  

Applying the laws of geometrical optics, the image 

produced by an imaging device can be conveniently calculated 

with ray tracing. However, the usual ray tracing algorithms 

can be applied only for configurations, where the materials are 

homogeneous, isotropic and thick compared to the wavelength 

[4]. Metamaterials are mostly anisotropic, lossy and thin 

compared to the wavelength, hence only full wave simulation 

can provide an accurate image. Full wave simulation needs, 

however, huge computational effort as the unit cell and feature 

sizes of the metamaterials are smaller than the wavelength, 

while the full size of the imaging system is usually large 

compared to the wavelength. 

In this paper we propose a method that efficiently combines 

geometrical optics, full wave simulation and the transfer 

matrix method to provide a fast calculation procedure for 

imaging systems with metamaterials. 

II. EFFECTIVE PARAMETER RETRIEVAL 

Due to their sub-wavelength feature sizes metamaterials can 

be characterized with macroscopic material parameters in a 

limited frequency range. These parameters can be retrieved 

from the complex reflection-transmission coefficients of a 

finite slab [5]-[6]. The effective material parameters depend 

strongly on the angle of incidence. Therefore, to fully 

characterize the electromagnetic behavior of metamaterial it is 

necessary to retrieve the effective parameters for a number of 

incident angles, for both TE and TM polarization, similarly to 

natural anisotropic materials. 

Full wave simulation of one metamaterial unit cell is 

performed with Bloch boundary condition to calculate the S-

parameters for plane waves with different incident angles. 

These calculations do not need high computational effort as 

only one cell is considered. 

From the S-parameters the normal wave number (kz) is 

retrieved according to [6], while the lateral wave number (kx), 

which is conserved at the interface of two media, can be 

determined from the incident angle. The generalized wave 

impedance (𝜉) is also retrieved for each angle of incidence [6]. 

The relation between kz and kx gives the dispersion relation for 

the given frequency, while the generalized wave impedance 

can be used to calculate reflections on the boundary of the 

metamaterial. 

Fig.1. shows the dispersion relation of a fishnet structure 

operating in the optical regime [7]. The size of the rectangular 

unit cell is 600x600 nm, the size of the window is 284x500nm, 

the thickness of the MgF2 separation layer is 30nm and the 

thickness of the silver layers is 45nm. The structure shows an 

elliptic-like dispersion relation for small incident angles 

around 360THz, which varies rapidly with the frequency, 

where the fishnet can be applied e.g. for chromatic aberration 

correction. 

 
               (a)                                           (b) 

Fig. 1. a) The unit cell of the examined fishnet metamaterial. b) The 
dispersion relation of the fishnet structure (red, green, blue curves), compared 

to that of vacuum (black curve). k0 is the free space wavenumber. 
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III. CALCULATION OF IMAGING A POINT SOURCE WITH A 

METAMATERIAL SLAB  

To calculate the image of a point source placed behind a 

metamaterial slab, where the length of the metamaterial is 

much larger than the wavelength, is a cumbersome problem 

and requires full wave simulation of the whole system 

including an extended area of the metamaterial slab. To avoid 

this huge computational effort, we utilize the transfer matrix 

method [2], with the dispersion relation presented in Fig. 1. 

Therefore the validity of the calculations is extended even to 

frequency ranges, where homogenization fails. 

The electromagnetic field of the point source is decomposed 

into plane waves using Fourier transform. The complex 

amplitude of each plane wave is then calculated in the image 

plane behind the metamaterial slab by applying the transfer 

matrix method. The transfer function of the medium between 

the source plane and the metamaterial slab is 

    𝑇(𝑘𝑥) = exp(𝑖𝑘𝑧
𝑠𝑑𝑠),  (1) 

where ds is the distance from the source to the metamaterial 

and 𝑘𝑧
𝑠 is the normal wave number corresponding to the 

surrounding medium. Similar expression can be obtained for 

the transfer function between the metamaterial slab and the 

image plane. The transfer function of a homogeneous slab 

with finite thickness d is 
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where 𝜉 is the generalized wave impedance and  𝑘𝑧 is the 

normal wave number in the metamaterial. If internal 

reflections within the metamaterial are neglected, the transfer 

function is simplified to 

 𝑇𝑠𝑙𝑎𝑏,2(𝑘𝑥) = (1 − Γ1) exp(𝑖𝑘𝑧𝑑) (1 − Γ2), (3) 

where Γ1 and Γ2 are the reflection coefficients on the first (air-

slab) and second (slab-air) boundary 

 Γ1 = (𝑘𝑧
𝑠 − 𝜉)/(𝑘𝑧

𝑠 + 𝜉) , Γ2 = (𝜉 − 𝑘𝑧
𝑠)/(𝜉 + 𝑘𝑧

𝑠 ). (4) 

The total transfer function of the imaging system, where the 

metamaterial slab is surrounded with air is 

       𝑇𝑡𝑜𝑡𝑎𝑙(𝑘𝑥) = 𝑇𝑎𝑖𝑟,1(𝑘𝑥)𝑇𝑠𝑙𝑎𝑏(𝑘𝑥)𝑇𝑎𝑖𝑟,2(𝑘𝑥) . (5) 

The electromagnetic field distribution in the image plane is 

obtained by multiplying (5) by the complex amplitudes of the 

plane waves in the source plane. The contributions of each 

plane wave is summed up to provide the full electromagnetic 

field distribution in the image plane. 

 If the electromagnetic field is known in the image plane, 

then the virtual image of the point source, which can be 

observed by an observer, can be calculated. The image is 

perceived by the observer as if rays were propagating through 

vacuum from a virtual source, hence the position of this virtual 

source can be determined by applying the inverse transfer 

function of vacuum on the Fourier transform of the image 

plane. Fig. 2.b depicts the reversed field. The virtual source 

can be found at the intensity maxima. 

 
(a)                            (b) 

Fig. 2. The electric field distribution of a point source located near a 

metamaterial slab (a). The calculated virtual image of the point source after 
applying backward calculations from the image plane (b). 

Another way to determine the position of the virtual source 

is the tracing back of Poynting vectors. Poynting vectors do 

not bend in vacuum, hence the virtual source can be found at 

the intersection of the straight lines elongating the Poynting 

vectors, just like in case of geometrical optics, as shown in 

Fig. 2.b. Note that the virtual distance depends on the angle of 

observation. 

From the computed virtual distance an effective geometrical 

refractive index can be obtained for each incident angle 𝛼 

 𝑛𝑒𝑓𝑓(𝛼) = √1/ (
(𝑥+𝑑)2

𝑑2  cos2𝛼 + sin2𝛼 )  , (6) 

where x is the distance between the real and the virtual 

position of the point source. The effective geometrical index 

allows the calculation of refraction by applying Snell’s law. 

IV. FURTHER INVESTIGATIONS 

In the full paper inhomogeneous metamaterial slabs will be 

discussed, and the developed procedure will be applied to 

determine the imaging properties of Fishnet metamaterials. 

V. ACKNOWLEDGEMENT 

This work has been supported by the Bolyai János Fellowship of 

Hungarian Academy of Sciences, the PIAC-13-1-2013-0186 and KMR-12-1-

2012-0008 projects of the National Development Agency Hungary and 

EUREKA project MetaFer. 

REFERENCES 

[1] R. W. Ziolkowski, "Design, fabrication, and testing of double negative 

metamaterials," IEEE Trans. Antennas and Propagation vol. 51, pp. 
1516-1529, 2003. 

[2] W. Cai and V. M. Shalaev, Optical metamaterials, Springer, 2010. 

[3] V. A. Kildishev, A. Boltasseva and V. M. Shalaev, "Planar photonics with 
metasurfaces," Science, vol. 339, pp. 1232009, 2013. 

[4] W. L. Stutzman and G. A. Thiele, Antenna Design and Theory, Wiley, 

2013. 
[5] Zs. Szabo and J. Fuzi, "Equivalence of Magnetic Metamaterials and 

Composites in the View of Effective Medium Theories," IEEE Trans. 

Magnetics, vol.50, no.4, pp.1,4, April 2014. 
[6] Ch Menzel, C. Rockstuhl, T. Paul and F. Lederer, “Retrieving effective 

parameters for metamaterials at oblique incidence,” Phys. Rev. B, vol. 

77, pp. 195328, 2008. 
[7] G. Dolling, C. Enkrich and M. Wegener, "Low-loss negative-index 

metamaterial at telecommunication wavelengths," Optics Letters vol. 31, 

pp. 1800-1802, 2006. 


